Infinitesimal deformations and stabilities of singular Legendre submanifolds.
ثبت نشده
چکیده
Infinitesimal deformations and stabilities of singular Legendre submanifolds.
منابع مشابه
Deformation and Applicability of Surfaces in Lie Sphere Geometry
The theory of surfaces in Euclidean space can be naturally formulated in the more general context of Legendre surfaces into the space of contact elements. We address the question of deformability of Legendre surfaces with respect to the symmetry group of Lie sphere contact transformations from the point of view of the deformation theory of submanifolds in homogeneous spaces. Necessary and suffi...
متن کاملInfinitesimal Deformations of Double Covers of Smooth Algebraic Varieties
The goal of this paper is to give a method to compute the space of infinitesimal deformations of a double cover of a smooth algebraic variety. This research was inspired by the analysis of Calabi–Yau manifolds that arise as smooth models of double covers of P branched along singular octic surfaces ([4, 3]). It is of considerable interest to determine the Hodge numbers for these manifolds, but t...
متن کاملSecond Variation of Compact Minimal Legendrian Submanifolds of the Sphere
The second variation operator of minimal submanifolds of Riemannian manifolds (the Jacobi operator) carries information about stability properties of the submanifold when it is thought of as a critical point for the area functional. When the ambient Riemannian manifold is a sphere S, Simons [S] characterized the totally geodesic submanifolds as the minimal submanifolds of S either with the lowe...
متن کاملThe Legendre Wavelet Method for Solving Singular Integro-differential Equations
In this paper, we present Legendre wavelet method to obtain numerical solution of a singular integro-differential equation. The singularity is assumed to be of the Cauchy type. The numerical results obtained by the present method compare favorably with those obtained by various Galerkin methods earlier in the literature.
متن کاملA Rigidity Theorem for Lagrangian Deformations
We consider deformations of singular Lagrangian varieties in symplectic spaces. We prove that a Lagrangian deformation of a Lagrangian complete intersection is analytically rigid provided that this is the case infinitesimally. This result solves a problem posed by Colin de Verdière concerning Lagrangian curves. Finally, we prove the coherence of the direct image sheaves of relative infinitesima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003